3.374 \(\int \frac {1-i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx\)

Optimal. Leaf size=45 \[ \frac {2 i \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{d \sqrt {a+i b}} \]

[Out]

2*I*arctanh((a+b*tan(d*x+c))^(1/2)/(a+I*b)^(1/2))/d/(a+I*b)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 45, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {3537, 63, 208} \[ \frac {2 i \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{d \sqrt {a+i b}} \]

Antiderivative was successfully verified.

[In]

Int[(1 - I*Tan[c + d*x])/Sqrt[a + b*Tan[c + d*x]],x]

[Out]

((2*I)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + I*b]])/(Sqrt[a + I*b]*d)

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 3537

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c*
d)/f, Subst[Int[(a + (b*x)/d)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rubi steps

\begin {align*} \int \frac {1-i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx &=-\frac {i \operatorname {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a+i b x}} \, dx,x,-i \tan (c+d x)\right )}{d}\\ &=-\frac {2 \operatorname {Subst}\left (\int \frac {1}{-1+\frac {i a}{b}-\frac {i x^2}{b}} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{b d}\\ &=\frac {2 i \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{\sqrt {a+i b} d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 45, normalized size = 1.00 \[ \frac {2 i \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{d \sqrt {a+i b}} \]

Antiderivative was successfully verified.

[In]

Integrate[(1 - I*Tan[c + d*x])/Sqrt[a + b*Tan[c + d*x]],x]

[Out]

((2*I)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + I*b]])/(Sqrt[a + I*b]*d)

________________________________________________________________________________________

fricas [B]  time = 0.48, size = 267, normalized size = 5.93 \[ -\frac {1}{4} \, \sqrt {\frac {4 i}{{\left (-i \, a + b\right )} d^{2}}} \log \left (\frac {{\left ({\left ({\left (i \, a - b\right )} d e^{\left (2 i \, d x + 2 i \, c\right )} + {\left (i \, a - b\right )} d\right )} \sqrt {\frac {{\left (a - i \, b\right )} e^{\left (2 i \, d x + 2 i \, c\right )} + a + i \, b}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {4 i}{{\left (-i \, a + b\right )} d^{2}}} + 2 \, a e^{\left (2 i \, d x + 2 i \, c\right )} + 2 \, a + 2 i \, b\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{{\left (-i \, a + b\right )} d}\right ) + \frac {1}{4} \, \sqrt {\frac {4 i}{{\left (-i \, a + b\right )} d^{2}}} \log \left (\frac {{\left ({\left ({\left (-i \, a + b\right )} d e^{\left (2 i \, d x + 2 i \, c\right )} + {\left (-i \, a + b\right )} d\right )} \sqrt {\frac {{\left (a - i \, b\right )} e^{\left (2 i \, d x + 2 i \, c\right )} + a + i \, b}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {4 i}{{\left (-i \, a + b\right )} d^{2}}} + 2 \, a e^{\left (2 i \, d x + 2 i \, c\right )} + 2 \, a + 2 i \, b\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{{\left (-i \, a + b\right )} d}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-I*tan(d*x+c))/(a+b*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

-1/4*sqrt(4*I/((-I*a + b)*d^2))*log((((I*a - b)*d*e^(2*I*d*x + 2*I*c) + (I*a - b)*d)*sqrt(((a - I*b)*e^(2*I*d*
x + 2*I*c) + a + I*b)/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(4*I/((-I*a + b)*d^2)) + 2*a*e^(2*I*d*x + 2*I*c) + 2*a +
2*I*b)*e^(-2*I*d*x - 2*I*c)/((-I*a + b)*d)) + 1/4*sqrt(4*I/((-I*a + b)*d^2))*log((((-I*a + b)*d*e^(2*I*d*x + 2
*I*c) + (-I*a + b)*d)*sqrt(((a - I*b)*e^(2*I*d*x + 2*I*c) + a + I*b)/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(4*I/((-I*
a + b)*d^2)) + 2*a*e^(2*I*d*x + 2*I*c) + 2*a + 2*I*b)*e^(-2*I*d*x - 2*I*c)/((-I*a + b)*d))

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-I*tan(d*x+c))/(a+b*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Warning, need to choose a
branch for the root of a polynomial with parameters. This might be wrong.The choice was done assuming [d]=[-84
,-49]sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument ValueWarning, need
to choose a branch for the root of a polynomial with parameters. This might be wrong.The choice was done assum
ing [d]=[82,-6]sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Valuesym2
poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(const ge
n & e,const index_m & i,const vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(const gen & e,const index_m
 & i,const vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(const gen & e,const index_m & i,const vecteur
& l) Error: Bad Argument Valuesym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Arg
ument Valuesym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Valuesym2poly
/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(const gen &
e,const index_m & i,const vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(const gen & e,const index_m & i
,const vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l)
 Error: Bad Argument ValueWarning, integration of abs or sign assumes constant sign by intervals (correct if t
he argument is real):Check [abs(t_nostep^2-1)]Discontinuities at zeroes of t_nostep^2-1 were not checkedEvalua
tion time: 81.13Done

________________________________________________________________________________________

maple [B]  time = 0.21, size = 1624, normalized size = 36.09 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1-I*tan(d*x+c))/(a+b*tan(d*x+c))^(1/2),x)

[Out]

-I/d/(2*(a^2+b^2)^(1/2)+2*a)^(1/2)/((a^2+b^2)^(1/2)*a+a^2+b^2)*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*
a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*a^2+1/2*I/d/(2*(a^2+b^2)^(1/2)+2*a)^(1/2)/(a^2+b^2)^(1/2)*ln(b*tan(d*
x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*a+1/2/d/(2*(a^2+b^2)^(1/2)+2*a)^(
1/2)/(a^2+b^2)^(1/2)*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*b
-I/d/(2*(a^2+b^2)^(1/2)+2*a)^(1/2)/(a^2+b^2)^(1/2)/((a^2+b^2)^(1/2)*a+a^2+b^2)*ln((a+b*tan(d*x+c))^(1/2)*(2*(a
^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*a^3-1/2*I/d/(2*(a^2+b^2)^(1/2)+2*a)^(1/2)/((a^2+b^2)^
(1/2)*a+a^2+b^2)*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*b^2+1
/d*b/(a^2+b^2)^(1/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1
/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))+I/d/((a^2+b^2)^(1/2)*a+a^2+b^2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(
a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*b^2+1/2*I/d/(2*(a^2+b^2)^(1
/2)+2*a)^(1/2)*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))-I/d/(2*
(a^2+b^2)^(1/2)+2*a)^(1/2)/(a^2+b^2)^(1/2)/((a^2+b^2)^(1/2)*a+a^2+b^2)*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^
(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*a*b^2-I/d/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*
x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))-1/2/d/(2*(a^2+b^2)^(1/2)+2*a)^(1/2)/
((a^2+b^2)^(1/2)*a+a^2+b^2)*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(
1/2))*a*b-1/2/d/(2*(a^2+b^2)^(1/2)+2*a)^(1/2)/(a^2+b^2)^(1/2)/((a^2+b^2)^(1/2)*a+a^2+b^2)*ln((a+b*tan(d*x+c))^
(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*a^2*b-1/2/d/(2*(a^2+b^2)^(1/2)+2*a)^(1/2)/
(a^2+b^2)^(1/2)/((a^2+b^2)^(1/2)*a+a^2+b^2)*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+
c)-a-(a^2+b^2)^(1/2))*b^3+I/d/(a^2+b^2)^(1/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(
2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a-1/d/((a^2+b^2)^(1/2)*a+a^2+b^2)/(2*(a^2+b^2)^(1
/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*
a*b-1/d/(a^2+b^2)^(1/2)/((a^2+b^2)^(1/2)*a+a^2+b^2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2
*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^2*b-1/d/(a^2+b^2)^(1/2)/((a^2+b^2)^(1/2)*
a+a^2+b^2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a
^2+b^2)^(1/2)-2*a)^(1/2))*b^3

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-I*tan(d*x+c))/(a+b*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(b-a>0)', see `assume?` for mor
e details)Is b-a positive, negative or zero?

________________________________________________________________________________________

mupad [B]  time = 7.62, size = 1410, normalized size = 31.33 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(tan(c + d*x)*1i - 1)/(a + b*tan(c + d*x))^(1/2),x)

[Out]

(log(d*(-1/(d^2*(a - b*1i)))^(1/2)*(a + b*tan(c + d*x))^(1/2) + 1i)*(-1/(a*d^2 - b*d^2*1i))^(1/2))/2 - 2*atanh
((32*b^2*((b*1i)/(4*a^2*d^2 + 4*b^2*d^2) - a/(4*a^2*d^2 + 4*b^2*d^2))^(1/2)*(a + b*tan(c + d*x))^(1/2))/((a^2*
b^2*d^2*64i)/(4*a^2*d^3 + 4*b^2*d^3) - (b^2*16i)/d + (64*a*b^3*d^2)/(4*a^2*d^3 + 4*b^2*d^3)) - (128*a^2*b^2*((
b*1i)/(4*a^2*d^2 + 4*b^2*d^2) - a/(4*a^2*d^2 + 4*b^2*d^2))^(1/2)*(a + b*tan(c + d*x))^(1/2))/((a^2*b^4*d^2*256
i)/(4*a^2*d^3 + 4*b^2*d^3) - (a^2*b^2*64i)/d - (b^4*64i)/d + (256*a^3*b^3*d^2)/(4*a^2*d^3 + 4*b^2*d^3) + (a^4*
b^2*d^2*256i)/(4*a^2*d^3 + 4*b^2*d^3) + (256*a*b^5*d^2)/(4*a^2*d^3 + 4*b^2*d^3)) + (a*b^3*((b*1i)/(4*a^2*d^2 +
 4*b^2*d^2) - a/(4*a^2*d^2 + 4*b^2*d^2))^(1/2)*(a + b*tan(c + d*x))^(1/2)*128i)/((a^2*b^4*d^2*256i)/(4*a^2*d^3
 + 4*b^2*d^3) - (a^2*b^2*64i)/d - (b^4*64i)/d + (256*a^3*b^3*d^2)/(4*a^2*d^3 + 4*b^2*d^3) + (a^4*b^2*d^2*256i)
/(4*a^2*d^3 + 4*b^2*d^3) + (256*a*b^5*d^2)/(4*a^2*d^3 + 4*b^2*d^3)))*(-(a - b*1i)/(4*a^2*d^2 + 4*b^2*d^2))^(1/
2) - log(d*(-1/(d^2*(a - b*1i)))^(1/2)*(a + b*tan(c + d*x))^(1/2)*1i + 1)*(-1/(4*(a*d^2 - b*d^2*1i)))^(1/2) +
(log(16*b^2*(a + b*tan(c + d*x))^(1/2) + 16*b^3*d*(-1/(d^2*(a - b*1i)))^(1/2) - (16*a*b^2*(a + b*tan(c + d*x))
^(1/2))/(a - b*1i))*(-1/(a*d^2 - b*d^2*1i))^(1/2))/2 - log(16*b^3*d*(-1/(d^2*(a - b*1i)))^(1/2) - 16*b^2*(a +
b*tan(c + d*x))^(1/2) + (16*a*b^2*(a + b*tan(c + d*x))^(1/2))/(a - b*1i))*(-1/(4*(a*d^2 - b*d^2*1i)))^(1/2) +
2*atanh((32*b^2*((b*1i)/(4*a^2*d^2 + 4*b^2*d^2) - a/(4*a^2*d^2 + 4*b^2*d^2))^(1/2)*(a + b*tan(c + d*x))^(1/2))
/((b^4*d^2*64i)/(4*a^2*d^3 + 4*b^2*d^3) - (64*a*b^3*d^2)/(4*a^2*d^3 + 4*b^2*d^3)) + (a*b^3*((b*1i)/(4*a^2*d^2
+ 4*b^2*d^2) - a/(4*a^2*d^2 + 4*b^2*d^2))^(1/2)*(a + b*tan(c + d*x))^(1/2)*128i)/((b^6*d^2*256i)/(4*a^2*d^3 +
4*b^2*d^3) + (a^2*b^4*d^2*256i)/(4*a^2*d^3 + 4*b^2*d^3) - (256*a^3*b^3*d^2)/(4*a^2*d^3 + 4*b^2*d^3) - (256*a*b
^5*d^2)/(4*a^2*d^3 + 4*b^2*d^3)) - (128*a^2*b^2*((b*1i)/(4*a^2*d^2 + 4*b^2*d^2) - a/(4*a^2*d^2 + 4*b^2*d^2))^(
1/2)*(a + b*tan(c + d*x))^(1/2))/((b^6*d^2*256i)/(4*a^2*d^3 + 4*b^2*d^3) + (a^2*b^4*d^2*256i)/(4*a^2*d^3 + 4*b
^2*d^3) - (256*a^3*b^3*d^2)/(4*a^2*d^3 + 4*b^2*d^3) - (256*a*b^5*d^2)/(4*a^2*d^3 + 4*b^2*d^3)))*(-(a - b*1i)/(
4*a^2*d^2 + 4*b^2*d^2))^(1/2)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ - i \left (\int \frac {i}{\sqrt {a + b \tan {\left (c + d x \right )}}}\, dx + \int \frac {\tan {\left (c + d x \right )}}{\sqrt {a + b \tan {\left (c + d x \right )}}}\, dx\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-I*tan(d*x+c))/(a+b*tan(d*x+c))**(1/2),x)

[Out]

-I*(Integral(I/sqrt(a + b*tan(c + d*x)), x) + Integral(tan(c + d*x)/sqrt(a + b*tan(c + d*x)), x))

________________________________________________________________________________________